14,476 research outputs found

    New gravitational solutions via a Riemann-Hilbert approach

    Full text link
    We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.Comment: 29 pages, 2 figures; v2: reference added, matches published versio

    The bearable compositeness of leptons

    Get PDF
    Partial compositeness as a theory of flavor in the lepton sector is assessed. We begin presenting the first systematic analysis of neutrino mass generation in this context, and identifying the distinctive mass textures. We then update the bounds from charged lepton flavor and CP violating observables. We put forward a U(1)3 × CP symmetry of the composite sector, in order to allow the new physics to be not far above the TeV scale. This hypothesis effectively suppresses the new contributions to the electron EDM and μ → eγ, by far the most constraining observables, and results in a novel pattern of flavor violation and neutrino masses. The CP violation in the elementary-composite mixing is shown to induce a CKM phase of the correct size, as well as order-one phases in the PMNS matrix. We compare with the alternative possibility of introducing multiple scales of compositeness for leptons, that also allow to evade flavor and CP constraints. Finally, we examine violations of lepton flavor universality in B-meson semi-leptonic decays. The neutral-current anomalies can be accommodated, predicting strong correlations among different lepton flavors, with a few channels close to the experimental sensitivity

    Physical Properties of Galactic Planck Cold Cores revealed by the Hi-GAL survey

    Get PDF
    Previous studies of the initial conditions of massive star formation have mainly targeted Infrared-Dark Clouds (IRDCs) toward the inner Galaxy. This is due to the fact that IRDCs were first detected in absorption against the bright mid-IR background, requiring a favourable location to be observed. By selection, IRDCs represent only a fraction of the Galactic clouds capable of forming massive stars and star clusters. Due to their low dust temperatures, IRDCs are bright in the far-IR and millimeter and thus, observations at these wavelengths have the potential to provide a complete sample of star-forming massive clouds across the Galaxy. Our aim is to identify the clouds at the initial conditions of massive star formation across the Galaxy and compare their physical properties as a function of their Galactic location. We have examined the physical properties of a homogeneous galactic cold core sample obtained with the Planck satellite across the Galactic Plane. With the use of Herschel Hi-GAL observations, we have characterized the internal structure of them. By using background-subtracted Herschel images, we have derived the H2 column density and dust temperature maps for 48 Planck clumps. Their basic physical parameters have been calculated and analyzed as a function of location within the Galaxy. These properties have also been compared with the empirical relation for massive star formation derived by Kauffmann & Pillai (2010). Most of the Planck clumps contain signs of star formation. About 25% of them are massive enough to form high mass stars. Planck clumps toward the Galactic center region show higher peak column densities and higher average dust temperatures than those of the clumps in the outer Galaxy. Although we only have seven clumps without associated YSOs, the Hi-GAL data show no apparent differences in the properties of Planck cold clumps with and without star formation.Comment: 22 pages, 11 figures, accepted for publication in A&

    Variegate galaxy cluster gas content: Mean fraction, scatter, selection effects and covariance with X-ray luminosity

    Get PDF
    We use a cluster sample selected independently of the intracluster medium content with reliable masses to measure the mean gas mass fraction and its scatter, the biases of the X-ray selection on gas mass fraction, and the covariance between the X-ray luminosity and gas mass. The sample is formed by 34 galaxy clusters in the nearby (0.050<z<0.1350.050<z<0.135) Universe, mostly with 14<logM500/M14.514<\log M_{500}/M_\odot \lesssim 14.5, and with masses calculated with the caustic technique. First, we found that integrated gas density profiles have similar shapes, extending earlier results based on subpopulations of clusters such as those that are relaxed or X-ray bright for their mass. Second, the X-ray unbiased selection of our sample allows us to unveil a variegate population of clusters; the gas mass fraction shows a scatter of 0.17±0.040.17\pm0.04 dex, possibly indicating a quite variable amount of feedback from cluster to cluster, which is larger than is found in previous samples targeting subpopulations of galaxy clusters, such as relaxed or X-ray bright clusters. The similarity of the gas density profiles induces an almost scatterless relation between X-ray luminosity, gas mass, and halo mass, and modulates selection effects in the halo gas mass fraction: gas-rich clusters are preferentially included in X-ray selected samples. The almost scatterless relation also fixes the relative scatters and slopes of the LXML_X-M and MgasMM_{gas}-M relations and makes core-excised X-ray luminosities and gas masses fully covariant. Therefore, cosmological or astrophysical studies involving X-ray or SZ selected samples need to account for both selection effects and covariance of the studied quantities with X-ray luminosity/SZ strength.Comment: A&A, in press, minor language changes from previous versio
    corecore